DIFFERENCES IN DWI IMAGE INFORMATION WITH VARIATION IN B-VALUE IN MRI BRAIN CASES TUMOR
DOI:
https://doi.org/10.54973/miror.v3i2.358Keywords:
Sinuitis, Pranasal Sinuses CT-Scan, Slice ThicknessAbstract
Diffusion Weighted Imaging (DWI) is a sequence used in brain tumor cases to assess molecular movement
(diffusion). DWI is influenced by the selection of the b-value parameter which results in differences in the
generated signal. The aim of this study is to determine the differences in b-value variations of 500, 1000, 1500
s/mm2 in brain tumor cases and identify the most optimal variation. This study is a pre-experimental study
conducted using a 1.5 Tesla Philips MRI machine at a private hospital in South Jakarta from March to April 2023.
The sample consisted of twelve DWI MRI images with different b-value variations. Visual grading analysis was
performed by three radiology specialists, and the data were analyzed using the Friedman test in SPSS. The results
showed a significant difference in image information based on the use of different b-value variations, with a pvalue of 0.05 (2.36). The use of a b-value of 1000 s/mm had the highest mean rank in the basal ganglia, cerebellum,
thalamus, pons, gray matter, and lesions. The difference in image information with b-value variations visualized
different brain tumor representations due to increased noise with higher b-values and suboptimal image sharpness
with lower b-values due to low signal intensity. The use of b-value variations of 500, 1000, 1500 s/mm2
resulted
in differences in anatomical image information in sequences DWI MRI brain axial of brain cases tumor due to
differences in image noise and signal intensity, with a b-value of 1000 s/mm being the most optimal variation.
Downloads
References
Burdette, J. H., Durden, D. D., Elster, A. D., & Yen, Y. F. (2001). High b-value diffusion-weighted MRI of normal brain. Journal of computer assisted tomography, 25(4): 515-519
DeLano, M. C., Cooper, T. G., Siebert, J. E., Potchen, M. J., & Kuppusamy, K. (2000). High-b-value diffusion-weighted MR imaging of adult brain: image contrast and apparent diffusion coefficient map features. American Journal of Neuroradiology, 21(10):1830-1836.
Elmaoğlu, M., Çelik, A., & Handbook, M. R. I. (2012). MR Physics, Patient Positioning, and Protocols. Springer Steet: New York
Geith, T., Schmidt, G., Biffar, A., Dietrich, O., Dürr, H.R., Reiser, M., & Baur-Melnyk, A. 2012. "Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures." American Journal of Roentgenology, 199(5):1083–1092
Han, C., Zhao, L., Zhong, S., Wu, X., Guo, J., Zhuang, X., & Han, H. (2015). A comparison of high b-value vs standard b-value diffusion-weighted magnetic resonance imaging at 3.0 T for medulloblastomas. The British journal of radiology, 88(1054): 20150220.
Heranurweni, S., Destyningtias, B., & Nugroho, A. K. (2018). Klasifikasi pola image pada pasien tumor otak berbasis jaringan syaraf tiruan (studi kasus penanganan kuratif pasien tumor otak). Elektrika, 10(2): 37-40.
Hines, T. (2018, April). Anatomy of Brain. Tersedia dalam Mayfield Clinic: https://mayfieldclinic.com/pe-anatbrain.htm[Acessed 09 September 2022]
Kathirvel, R., & Batri, K. (2017). Detection and diagnosis of meningioma brain tumor using A NFIS classifier. International Journal of Imaging Systems and Technology, 27(3): 187-192.
Koc, Z., Erbay, G., Ulusan, S., Seydaoglu, G., & AkaBolat, F. 2012."Optimization of b value in diffusion-weighted MRI for characterization of benign and malignant gynecological lesions." Journal of Magnetic Resonance Imaging, 35(3):650–659
Tang, L., & Zhou, X. J. (2019). Diffusion MRI of cancer: From low to high b‐values. Journal of Magnetic Resonance Imaging, 49(1): 23-40.
Min, Q., Shao, K., Zhai, L., Liu, W., Zhu, C., Yuan, L., & Yang, J. 2015. "Differential diagnosis of benign and malignant breast masses using diffusion-weighted magnetic resonance imaging." World Journal of Surgical Oncology, 13(1): 1–7
Mousavi, F., Faeghi, F., Javadian, H., Haghighatkhah, H., & Oraee-Yazdani, S. (2019). Evaluating the Origin of the Brain Metastatic Tumors by Using DWI Parameters. International Clinical Neuroscience Journal, 6(3): 92-97
Nadia,M., Purna.L., Masrochah. S., Poltekkes, & Semarang-Indonesia, K. (2018).Analisa Perbedaan Informasi Dan Kualitas Citra Mri Teknik Dwi (Diffusion Weighted Imaging) Dengan Variasi ‘B’ Value Pada Pemeriksaan Mri Brain Dengan Kasus Tumor Intracranial.
Nellyta, L. L. (2014). Kesesuaian Gambaran Hasil MRI Sekuens DWI dan ADC Terhadap Hasil MRI Konvensional pada Stroke Iskemik Dengan Onset Kurang Dari dan Sama Dengan 48 Jam di RSCM/RSPAD= Conformity Ischemic Stroke Features between DWI and ADC MRI sequence to Conventional MRI sequence with Onset Less Than or Same With 48 hours at Cipto Mangunkusumo Hospital/Central Army Hospital. Jurnal of Universitas Indonesia
R. George, J. Dela Cruz, R. Singh,& Dr Rajapandian Ilangovan. (2023). MRIMASTER. London, United Kingdom. Tersedia dalam: http://mrimaster.com/ [Accessed 2 Januari 2023]
Sim, J., & Wright, C. C. (2005). The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Physical therapy, 85(3): 257-268.
Sofian, J., & Laluma, R. H. (2019). Klasifikasi Hasil Citra Mri Otak Untuk Memprediksi Jenis Tumor Otak dengan Metode Image Threshold Dan GLCM Menggunakan Algoritma K-NN (Nearest Neighbor) Classifier Berbasis Web. Infotronik: Jurnal Teknologi Informasi dan Elektronika, 4(2): 51-56.
Susanto, F., Santoso, G., & Abimanyu, B. (2018). PERBEDAAN PEMBOBOTAN T2 TURBO SPIN ECHO (TSE) MRI BRAIN POTONGAN AXIAL ANTARA PENGGUNAAN SENSITIVITY ENCODING (SENSE) DENGAN TANPA SENSE: EVALUASI PADA SIGNAL TO NOISE RATIO (SNR) DAN SCAN TIME. JRI (Jurnal Radiografer Indonesia), 1(1): 30-36.
Westbrook et al . (2018). Hand Book Of MRI Technique(4th ed). SPi Publisher Services Pondicherry,india
Zeng, Q., Jiang, B., Shi, F., Ling, C., Dong, F., & Zhang, J. (2019). Bright Edge Sign on High b-Value Diffusion-Weighted Imaging as a New Imaging Biomarker to Predict Poor Prognosis in Glioma Patients: A Retrospective Pilot Study. Frontiers in Oncology, 9: 424.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Chindi, Fani Susanto, Lutfatul, Pradana
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.